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EXECUTIVE SUMMARY 

Most transportation agencies rely on point detectors (e.g., inductive loops, axle detectors) located 
at specific points on highways to collect data on traffic volumes, vehicle classes, and other 
relevant attributes of traffic. By utilizing the data collected from these point detectors, 
researchers have developed vehicle re-identification algorithms to match measurements at two 
sites that belong to the same vehicle. This enables tracking the movement of individual vehicles 
between different data collection sites, which in turn provides valuable information for the 
estimation of travel times, travel delays, and origin-destination flows. 

The aim of this OTREC project is to investigate the feasibility of re-identifying trucks in a 
statewide network by developing and applying vehicle re-identification algorithms. Data from 
weigh-in-motion (WIM) stations provide a basis for the development and testing of these 
algorithms. The data supporting this research come from the WIM sites in Oregon, which are 
equipped with sensors that can measure axle weights, axle spacing, and gross vehicle weight 
estimates that are uniquely matched to each truck. Since some of the trucks (20-35%) are 
carrying Green Light transponders, these measured attributes are also uniquely matched to 
transponder-equipped trucks. These particular trucks provide the needed data for model 
development, calibration, and testing.  

The vehicle re-identification method developed in this research consists of two main stages. In 
the first stage, each vehicle from the downstream station is matched to the most “similar” 
upstream vehicle, as is typically done in vehicle re-identification methods. Both a Euclidian 
distance method and a Bayesian method are utilized to solve the first-stage problem. In the 
second stage, several methods are introduced to screen out those vehicles that cross the 
downstream site but not the upstream site, and to trade off accuracy versus the total number of 
vehicles being matched. These methods involve calculating both the highest and the second 
highest similarity measures for each vehicle being matched. Several criteria are suggested and 
evaluated for screening mismatched vehicles of the first stage based on these similarity 
measures. As demonstrated in this report, the proposed screening approach improves the 
accuracy of the re-identification methods significantly.  

The models are applied to the truck data collected by weigh-in-motion (WIM) and automatic 
vehicle classification (AVC) sensors at three stations in Oregon, which together create two 
different “links” that are 125 and 145 miles long, respectively. It is observed that the algorithms 
can match trucks with approximately 90% accuracy while the total number of trucks being 
matched at this accuracy level is about 95% of the actual common trucks that cross both 
upstream and downstream sites. These methods allow the user to trade off the accuracy versus 
total vehicles being matched by adjusting a threshold parameter. For example, trucks can be 
matched with 98% accuracy if one is willing to match about 40% of all common trucks. It is also 
observed that when travel times of vehicles between the upstream and downstream sites exhibit 
larger variation, the re-identification becomes more challenging. In other words, mismatch rate 
increases as travel-time variance increases. Overall, for estimating travel times and OD flows, 
the methods presented in this report can be used effectively to match commercial vehicles 
crossing two data collection sites that are separated by long distances.   
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1.0 INTRODUCTION 

Most transportation agencies rely on point detectors (e.g., inductive loops, axle detectors) located 
at specific points on highways to collect data on traffic volumes, vehicle classes, and other 
relevant attributes of traffic. By utilizing the data collected from these point detectors, 
researchers have developed vehicle re-identification algorithms to match measurements at two 
sites that belong to the same vehicle. This enables tracking the movement of individual vehicles 
between different data collection sites, which in turn provides valuable information for the 
estimation of travel times, travel delays, and origin-destination flows. 

Even though there are other technologies that can be utilized to track the vehicle movement over 
transportation networks, most of these technologies (e.g., automatic vehicle identification (AVI) 
tags, license plate recognition) require installation of additional in-car and/or roadside devices 
and may have related privacy concerns. However, vehicle re-identification methods that are 
based on the vehicle-attribute data collected by sensors already installed on roadways enable 
tracking vehicles anonymously and do not require substantial additional investment.  

The aim of this OTREC project is to investigate the feasibility of re-identifying trucks in a 
statewide network by developing and applying vehicle re-identification algorithms. Data from 
weigh-in-motion (WIM) stations provide a basis for the development and testing of these 
algorithms. The data supporting this research come from the WIM sites in Oregon, which are 
equipped with sensors that can measure axle weights, axle spacing, and gross vehicle weight 
estimates that are uniquely matched to each truck. Since some of the trucks (20-35%) are 
carrying Green Light transponders, these measured attributes are also uniquely matched to 
transponder-equipped trucks. These particular trucks provide the needed data for model 
development, calibration, and testing.  

This report describes the algorithms developed for matching trucks crossing both an upstream 
and a downstream site. Since these sites are separated by long distances (e.g., more than 100 
miles), trucks traveling between these two points may stop for fuel or deliveries and thus may 
have different weights at two sites, which makes the re-identification a challenge. Furthermore, 
some trucks may have very similar attribute data (e.g., axle spacing) which makes distinguishing 
between individual trucks difficult. Despite these complications, as shown in the report, the 
methods perform reasonably well and can be potentially used in practice.   

Overall, the methods developed in this research can be used to support programs and 
applications for monitoring freight over the highways. One of the key aspects of monitoring 
freight has to do with determining the flow patterns (and travel times) of trucks, which can be 
achieved by uniquely identifying trucks at specific points along the roads or by tracking 
individual trucks using technology such as GPS. The re-identification method, in some 
circumstances, can be more advantageous compared to other available options to track and re-
identify trucks (e.g., GPS, AVI, license plate recognition) because of several reasons: 

 Data from AVI transponders, such as Green Light, or from other types of electronic 
tracking systems might not be readily available to the public agencies involved in motor 
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freight planning (e.g., MPOs, DOTs) due to privacy, jurisdictional, and institutional 
issues; 

 Not all trucks are equipped with AVI transponders. However, with the re-identification 
methods all trucks can be potentially tracked since they all cross the WIM stations; and 

 The proposed approach does not require installation of any new sensors since the input 
data are already collected at existing WIM and automatic vehicle classification (AVC) 
stations, whereas alternative technologies like license plate recognition requires 
additional investment. 

1.1 OBJECTIVES 

By building upon past and ongoing research by the PIs and others in the areas of WIM data 
analysis, travel-time estimation for commercial trucks and vehicle re-identification methods, this 
research aims to contribute to the state-of-the-art and state-of-practice in freight movement by 
developing and testing novel vehicle re-identification methods to improve the ability to estimate 
truck movements in a transportation network. These methods capitalize on vehicle-attribute data, 
such as axle spacing and axle weights, which are already collected by numerous sensors installed 
on roadways.  

The specific objectives of this project are: 

 To evaluate the feasibility of re-identifying commercial trucks based on vehicle-attribute 
data automatically collected by sensors installed at traffic-data collection stations; 

 To develop robust algorithms for truck re-identification based on these data; and 

 To test and evaluate the level of accuracy of the matching algorithms under different 
scenarios (e.g., depending on the distance between stations, available vehicle data, truck 
volume, truck type).  

1.2 ORGANIZATION OF THE REPORT 

This report is organized as follows: The next chapter provides an overview of some relevant 
studies on vehicle re-identification methods and applications, and Chapter 3 describes the WIM 
data utilized for model development and testing in this project. Chapter 4 describes the problem 
of re-identification in detail and presents the algorithms developed in this project. Chapter 5 
describes statistical finite mixture models and estimation of their parameters. These models are 
used in creating probability distributions needed for the re-identification algorithms described in 
Chapter 4. Chapter 6 presents the results of the application of the algorithms to the sample 
datasets.  The study’s conclusions are given in Chapter 7. 
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2.0 LITERATURE REVIEW 

As explained in A Concept for a National Freight Data Program: Special Report 276, data on 
goods movements are needed to identify and evaluate options for mitigating congestion; improve 
regional and global economic competitiveness; inform investment and policy decisions about 
modal optimization; enhance transportation safety and security; identify transportation marketing 
opportunities; and reduce fuel consumption and improve air quality (TRB 2003). This project 
contributes to a better understanding of freight movement by developing re-identification 
algorithms to estimate truck O-D (origin-destination) flows and travel times for trucks. Even 
though determining truck counts at particular locations on a transportation network is relatively 
easy to do, obtaining O-D data is, in general, more difficult since it requires uniquely re-
identifying trucks at multiple points. 

Since the mid-1990’s, many research efforts have focused on methods to anonymously track 
vehicular movements by re-identifying individual vehicles at multiple locations utilizing existing 
sensors.  The predominant objective has been to estimate travel times in order to characterize 
link performance.  For this reason, the re-identification has focused primarily on passenger cars 
and light trucks, which typically make up the majority of traffic in urban areas where the link 
performance varies the most.  Various techniques and technologies have been employed for the 
re-identification of vehicles including video/imaging (Shuldiner and Upchurch 2001) and AVI 
(Dion and Rakha 2006; Hellinga 2001). A more detailed explanation of these technologies and 
the associated techniques can be found in the Travel Time Data Collection Handbook (Turner et 
al. 1998).   

There have been several studies on re-identifying individual vehicles anonymously at multiple 
locations by utilizing data from existing inductive dual loop detectors (Sun et al. 1999; Coifman 
and Cassidy 2002; Coifman 2003). While most of the previous studies are based on data from 
dual loops, some researchers also extended the application of the re-identification algorithms to 
data from single loops (Coifman and Krishnamurthy 2007). Other than the traditional inductive 
loops that are embedded in the pavement, researchers have investigated new types of inductive 
loops, the so-called “blade sensors,” to get more detailed characteristics of vehicles. These 
sensors are more sensitive than the typical inductive loops and are capable of capturing wheel 
locations (Oh et al. 2007). In general, magnetic vehicle signatures from loops provide the raw 
data, which is used to extract useful vehicle features or attributes to differentiate between 
different vehicles. The predominant application of vehicle re-identification has been to estimate 
travel times (Liu et al. 2002; Oh et al. 2005; Sun et al. 2003). 

Less attention has been given to the techniques to re-identify commercial vehicles at multiple 
locations, even though such techniques can support numerous applications including estimating 
travel times for trucks, quantifying travel-time reliability, estimating truck-flow patterns (i.e., 
origins-destinations), estimating empty-truck movements, trip-length estimation, pavement 
management, WIM-sensor accuracy, and weigh-station enforcement.  
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Recently, the authors of this report explored the use of axle spacing and axle weight data to re-
identify commercial trucks at two WIM stations in Indiana where commercial trucks cross both 
stations (Cetin and Nichols 2009). They developed matching algorithms based on statistical 
mixture models and tested the performance of the algorithms on the data from these two WIM 
stations that are separated by one mile. The results showed that trucks were matched with 99% 
accuracy when both axle spacing and weight were used; and with 97% accuracy when only axle 
spacing was used. However, the WIM stations in this study were only separated by one mile and 
all trucks in the sample crossed both the upstream and downstream stations. As explained in this 
report, the datasets used in this project come from WIM stations in Oregon that are separated by 
greater distances (more than 100 miles), which introduces additional complexities since travel 
times can vary significantly and trucks can leave and new ones enter the road in between the two 
stations (this was not the case in the Indiana dataset).   

Other than the work by Cetin and Nichols in 2009, the only known previous application of WIM 
data for vehicle re-identification was conducted by the Norway Public Roads Administration for 
determining link travel times on the Oslo Toll Ring (Christiansen and Hauer 1996). A prototype 
of the system was tested at the Winter Olympic Games in Lillehammer in 1994 and was later 
refined with more advanced matching algorithms. 

In general, vehicle re-identification methods rely on the variability within the vehicle population 
and the ability to accurately identify the pairs of measurements collected at upstream and 
downstream stations that are generated by the same vehicle. These measurements can either be 
the actual physical attributes of vehicles such as length (Coifman and Cassidy 2002) and axle 
spacing (Cetin and Nichols 2009) or some characteristics of the sensor waveform or inductive 
vehicle signature (Sun et al. 1999). Researchers have developed various methods, such as 
lexicographic optimization (Sun et al. 1999; Oh et al. 2007) and decision trees (Tawfik et al. 
2004) to re-identify vehicles. In a typical implementation of these methods, a downstream 
vehicle is matched to the most “similar” upstream vehicle (or vice versa) based on some defined 
metric (e.g., Euclidian distance). The resulting accuracy of these methods depends on several 
factors, including the variation of the attribute data from vehicle to vehicle, number of attributes, 
the distance between data collection stations, variability of travel time, and type of re-
identification algorithm used. Given a particular set of factors, this accuracy may or may not be 
satisfactory for a given application. It would be desirable to have a model to “adjust” the level of 
accuracy by perhaps being more judicious in matching vehicles. In other words, the model 
should match a (select) set of vehicles rather than all vehicles such that the accuracy is 
maintained at an acceptable level.  

This research presents a new approach on how this can be done effectively. A recent paper 
summarizing some of the findings presented in this report recently was submitted for publication 
by the authors (Cetin et al. 2010). 
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3.0 WEIGH-IN-MOTION DATA 

In this chapter, the assembly, processing, and storage of the weigh-in-motion (WIM) and 
automatic vehicle classification (AVC) data is described. Oregon’s prescreening/preclearance 
program for commercial motor vehicles at fixed weigh and inspection stations is called Green 
Light. There are 22 equipped stations on the Oregon highway system.  These locations are shown 
in Figure 3.1 with a corresponding list of stations shown in Table 3.1. At each of the Green Light 
stations, approaching trucks are directed into the appropriate lane on the mainline highway. At a 
location upstream from the static weigh station, transponder-equipped trucks are identified by the 
reader. Participation in the Green Light program is high; on average, about 40% of observed 
vehicles are equipped with transponders (though this varies from station to station). In addition 
to the transponder record, the vehicles are weighed in motion (by load cells). The observation 
consists of axle weights as well as axel spacing. These data also include speed, timestamp, the 
lane of observation (some stations are multilane), length (calculated), gross vehicle weight 
(calculated), and a count of the number of axles (calculated). As part of the proprietary control 
program by the equipment vendor (International Road Dynamics), a sieved-based classification 
algorithm uses the axle spacing information to classify vehicles. An example of the transponder 
reader, over-height detection, and load and axle sensors is shown in Figure 3.2. A more detailed 
description of the Oregon WIM system is provided by Elkins and Higgins (2008). 

The unique aspect of Oregon’s system is that this transponder and weight-related data are 
available together in one record. These transponder-equipped vehicles provide a large pool of 
data to develop, validate, and test the vehicle re-identification techniques described within.  

 

Figure 3.1: Oregon Green Light Locations 
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Figure 3.2: A Green Light Station Pre-clearance Arrangement 

Table 3.1: List of stations 

Number Code Name Route Direction MP 

1 FWB Farewell Bend POE I-84  WB 353.31 

2 EMH Emigrant Hill I-84  WB 226.95 

3 WYT Wyeth I-84  WB 54.3 

4 CSL Cascade Locks POE I-84  EB 44.93 

5 LGR La Grande I-84  EB 258.52 

6 ODF Olds Ferry I-84  EB 354.38 

7 ASP Ashland POE I-5   NB 18.08 

8 BOR Booth Ranch I-5   NB 111.07 

9 WDN Woodburn, NB I-5   NB 274.15 

10 WDS Woodburn, SB I-5   SB 274.18 

11 BRE Brightwood, EB US-26 EB 36.51 

12 BRW Brightwood, WB US-26 WB 36.31 

13 JBS Juniper Butte US-97 SB 108.2 

14 LWL Lowell US-58 WB 17.17 

15 WLB Wilbur I-5   SB 130 

16 ASH Ashland, SB I-5   SB 18.08 

17 KFP Klamath Falls POE US-97 NB 271.73 

18 BND Bend US-97 NB 145.5 

19 JBN Juniper Butte US-97 NB 106.9 

20 KFS Klamath Falls, SB US-97 SB 271.41 

21 UMT Umatilla POE I-82  EB 183.8 

22 RPT Rocky Point US-30 WB 16.53 
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3.1 DATA ARCHIVE 

In support of this and other research, a WIM data archive was created. This archive is housed 
under the Portland Transportation Archive Listing (PORTAL) umbrella at Portland State 
University’s Intelligent Transportation Systems Lab. PORTAL is the official Archived Data User 
Service (ADUS) for the Portland metropolitan region as specified in the Regional ITS 
Architecture. PORTAL provides a centralized, electronic database that facilitates the collection, 
archiving, and sharing of information/data for public agencies within the region.  The creation of 
the PORTAL data archive was supported by a CAREER grant from the National Science 
Foundation (NSF). In addition, the FHWA (through ODOT) has supported the purchase of hard 
disc storage and the Portland metropolitan regional government (Metro) has invested in the 
ongoing support of the archive. 

The archive stores data in a PostgreSQL relational database management system (RDBMS). This 
archive implements a data warehousing strategy in that it retains large amounts of raw 
operational data for analysis and decision-making processes, and in that these data are stored 
independently of their operational sources, allowing the execution of time-consuming queries 
with no impact on critical operations uses.  The database server is a Dell Server with two Quad 
Core Intel Xeon Processors running at 2.33 GHz with 8GB of memory. The database server runs 
Red Hat Linux. The RDBMS stores data physically on a 3.2 Terabyte redundant array of 
independent disks (RAID) providing both high-speed access and increased reliability through 
redundancy in the event of hardware failure. Offsite backups of the raw data are done once a 
week. 

Monthly data are sent from ODOT via an FTP connection. These data are processed and then 
loaded into the WIM archive. A forthcoming OTREC report will describe the WIM data archive 
in detail (including data quality efforts) but a short description follows. There are four primary 
tables in the WIM data. A schematic of the database is shown in Figure 3.1. The truck-level 
observations are loaded in a table called wimdata. A table stations includes the identifying 
information about each station. The table stationmap is a list of all possible routes (i.e., 
upstream-to-downstream station pairs) which defines the free-flow travel time, distance, and a 
parameter called upper time (time to travel between stations at 50 mph). An algorithm described 
in Monsere et. al (2009), produces a table linktraveltime of all trucks matched by transponder 
identification number between stations. The search algorithm matches a truck with a transponder 
at an upstream station with the same transponder at the downstream station. All matches within 
the time window of 0.75*free-flow time to 2*free-flow time are recorded.  Free-flow time is 
defined as the time to traverse the route between stations at 55 mph (the posted speed limit for 
trucks on Oregon roadways).This table contains the upstream and downstream station numbers, 
tag number, and timestamps of each observation and whether the truck has been identified as a 
thru vehicle. 

At the time of this report’s publication, data are available for every truck observed from July 
2005 to October 2009 (approximately 43,053,800 observations). 
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Figure 3.1: Key Table Definitions for PSU PORTAL WIM Archive 

STATIONS
stationnum integer
station_code character(3)
longname text
name text
route character(5)
direction character(2)
hwy_no integer
roadbed integer
mp doubleprecision
lrs charactervarying(15)
lat doubleprecision
long doubleprecision
filename prefixtext

STATIONMAP
linkid integer
up_station integer
up_stationname character(3)
dwn_station integer
dwn_stationname character(3)
freeflow real
distance real
uppertime real

LINKTRAVELTIME
linkid integer
up_station integer
up_tag text
up_timestamp timestampwithtimezone
dwn_station integer
dwn_tag text
dwn_timestamp timestampwithtimezone
thru_truck boolean

WIMDATA
timestamp timestampwithtimezone
year integer
month integer
day integer
hour integer
minute integer
seconds integer
lane integer
speed integer
type integer
length integer
gvw real
esal real
sumlen real
numaxles integer
axl1 real
axl2 real
axl3 real
axl4 real
axl5 real
axl6 real
axl7 real
axl8 real
axl9 real
axl10 real
axl11 real
axl12 real
axl13 real
axl14 real
spc1 real
spc2 real
spc3 real
spc4 real
spc5 real
spc6 real
spc7 real
spc8 real
spc9 real
spc10 real
spc11 real
spc12 real
spc13 real
spc14 real
tag text
stationnum integer
gvw_zero boolean
gvw_50 boolean
mph_10 boolean
mph_99 boolean
length_200 boolean
axle_sum_length boolean
axle_sum_7 boolean
axle_first_5 boolean
num_axle_13 boolean
gvw_280 boolean
axle_spc_34 boolean
gvw_diff_7 boolean
truck_table integer
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3.2 DATASET FOR MODEL DEVELOPMENT AND TESTING  

To conduct the analysis described in the following chapters, a subset of the database was 
prepared. The data stored in the archive have not been processed for data quality and 
measurement errors are known to exist. Thus, the objective of the subset procedure was to 
identify a month of data from a pair of stations with a minimum of sensor error. 

To indentify the best performing stations in 2007, records of the most common vehicle (five-axle 
semi truck (Oregon type 11, FHWA Class 9) were compared for matched transponder-equipped 
trucks for all station pairs. Previous work (Nichols and Cetin, 2007) has shown that the weight of 
the steering axle is fairly constant for any truck-loading condition and the spacing between the 
drive axles (axle 2 and 3) is within a small range (based on manufacture’s data).  Further, 
properties of the vehicle such as length, number of axles, and axel spacing should not vary 
substantially between an upstream and downstream observation of the same vehicle (assuming 
the transponder is on the same vehicle). Some differences could be expected, such as if a tractor 
changed trailers or operated a drop axle. The assumption was made that stations with good 
measurement quality for Class 9 trucks would measure all vehicles with similar accuracy. 

This comparison was done graphically. For all station pairs, kernel density plots of the ratio of 
the upstream measurements to the downstream measurements for four different metrics were 
created: total truck length, distance in feet between axles 2 and 3 (the tandem drive axles), the 
total number of axles, and the steering axle weight.  If the upstream and downstream sensors are 
calibrated in exactly the same way, a density plot of the ratio should be tightly distributed around 
x=1.  Samples of these plots are shown for three selected station pairs in Figure 3.2-7 (plots for 
all stations are in Appendix B). It is clear from the figures that plot C: KFP to LWL has the data 
with the best upstream-downstream match (the ratio is most tightly distributed around 1). 
Graphical inspection of similar plots for all stations was used to select Link 234 - Klamath Falls 
to Lowell (KFP to LWL) as the “best” link. This 145-mile route is mostly a two-lane primary 
rural highway and consists of US-97 from just north of the California border north to the junction 
with OR-58, where it heads west over Oregon’s Cascade mountains. In addition, Link 231 – 
Klamath Falls to Bend also exhibited good data quality and was selected for further testing of the 
matching algorithm. This 125-mile route is also a two-lane primary rural highway (US-97).  

To further narrow the subset to one month in 2007, the above metrics and additional variables of 
interest for the re-identification algorithm (lengths between each axle pair and the weights for 
each axle) were considered.  Upon inspection, there did not appear to be much month-to-month 
variation for these station pairs; however, October 2007 seemed to show the most consistent 
agreement between the upstream and downstream detectors. Plots of the metrics for each month 
are shown in Appendix C for Link 231 and 234. 

Records of all vehicles for the three stations were used to test and develop the re-identification 
algorithm(s) described in the subsequent chapters. A total of 25,639 trucks were observed at 
Klamath Falls, 15,401 at Lowell and 23,609 at Bend in October 2007.  
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Figure 3.2 Kernel Density Plots of the Ratio of Upstream to Downstream Truck Length, Class 9 Trucks, 2007 

 

Figure 3.3 Kernel Density Plots of the Ratio of Upstream to Downstream Number of Axles, Class 9 Trucks, 2007 
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Figure 3.4 Kernel Density Plots of the Ratio of Upstream to Downstream Steering Axle Weight, Class 9 Trucks, 
2007 

 

Figure 3.5 Kernel Density Plots of the Ratio of Upstream to Downstream Spacing Between Axle 2-3, Class 9 
Trucks, 2007 
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4.0 RE-IDENTIFICATION ALGORITHMS 

The re-identification problem can be described as follows. Given two separate datasets that 
consist of vehicle-attribute data (such as length, axle spacing, axle weights or some attributes of 
the magnetic signature), the re-identification algorithms attempt to match the pairs of 
measurements (one from each dataset) that belong to the same vehicle. These two datasets are 
collected at some upstream and downstream points in a transportation network. To simplify the 
discussion an example is given in Figure 4.1, which shows graphically two datasets for four 
vehicles that cross upstream and downstream stations. Each box represents a vehicle and the 
attribute data is indicated with horizontal bars. The actual matching is indicated with arrows in 
Figure 4.1. For both sites, vehicle number 3 only crosses one of the sites.  

 

Figure 4.1: All vehicles are correctly matched while there is no match for one vehicle 

 

Figure 4.2: Vehicles 2 and 3 are mismatched  
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Vehicle re-identification algorithms attempt to match each vehicle in the downstream set to a 
vehicle in the upstream (or vice versa) based on some “similarity” measure that is a function of 
the attribute data between the two sites. Figure 4.2 shows a potential outcome from a 
hypothetical algorithm for the same vehicles given in Figure 4.1. In this case, vehicles numbered 
1 and 4 are matched accurately, as the similarity measure is maximized for these pairs. On the 
other hand, vehicles 2 and 3 are mismatched. In reality, for downstream vehicle 3 there is no 
match at the upstream, but the matching algorithm identifies the upstream vehicle 2 as the best 
match among the four possibilities. Based on this simple illustration it can be observed that not 
only a mechanism is needed to identify the best match (in terms of the similarity in attribute 
data), but also there needs to be a method in place to screen out vehicles that cross one site but 
not the other.  

Therefore, the vehicle re-identification approach developed in this research consists of two main 
stages. In the first stage, each vehicle from the downstream station is matched to the most 
“similar” upstream vehicle, as is typically done in vehicle re-identification methods. Both a 
distance-based method and a Bayesian method are utilized to solve the first-stage problem. These 
methods essentially capitalize on the variance in vehicle populations and the consistency or 
correlation of the measurements taken at the upstream and downstream stations. Figure 4.3 and 
Figure 4.4 show axle weights and axle spacing, respectively, that belong to the same vehicles 
measured at two stations. As it can be observed, there is high correlation between the 
measurements taken at these two sites. There is also significant variance in the attribute data due 
to the fact that physical characteristics of trucks vary significantly.  

For the second stage, several methods are developed to screen out vehicles that cross only one 
site. These methods increase the accuracy of matching but may reduce the total number of 
vehicles matched. By setting a threshold value, these methods allow the user to trade off 
accuracy versus the total number of vehicles being matched. These methods involve calculating 
both the highest and the second highest similarity measures for each vehicle being matched. As 
demonstrated in this report, the screening approach improves the accuracy of the re-identification 
methods significantly.  

The overall approach taken in model development can be described as follows. The WIM data 
from a given upstream-downstream station pair are first used to create “link data,” which contain 
attribute data only for those trucks that cross both upstream and downstream sites. This is done 
based on the transponder data as explained before. The link data is then divided into training 
(about two-thirds of the data) and testing datasets. The training dataset is then utilized for model 
development. The performance of these models is then evaluated on the test datasets. This 
process is carried out for AVC data and WIM data separately. AVC data contain only vehicle 
length and axle spacing, whereas WIM data contain both the AVC data and axle weights. Both 
datasets have timestamp information.  

The next subsections provide a detailed explanation of the algorithms and methods developed for 
solving the re-identification problem.  
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Figure 4.3 Axle 1 and axle 2 weights corresponding to the same trucks measured at upstream and downstream sites 

 

Figure 4.4 Spacing between axles 1 and 2 and 2 and 3 corresponding to the same trucks measured at upstream and 
downstream sites 

4.1 NOTATION AND THE SEARCH SPACE 

Let U and D be two non-empty sets that denote the vehicles crossing the upstream WIM station 
and downstream WIM station, respectively.  Depending on various factors including the station 
locations, WIM record validity (i.e., crossed sensors properly), and types of activity between the 
sensors, four general cases arise:  
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Even though the fundamental re-identification problem is the same in all four cases, the search 
procedure in the third case is the simplest, as all vehicles cross both sites.  In this case, for any 
selected vehicle there is a match in the other set (i.e., there is a one-to-one mapping between the 
members of the two sets). One can apply not only statistical matching algorithms but also 
assignment algorithms to assign all the members in one set to those in the other set while 
ensuring that each member is assigned only once. This is demonstrated in Cetin and Nichols 
2009 and is shown to significantly improve the accuracy of matching vehicles.  

The last case above (iv) is somewhat more difficult than the others since one needs to consider 
the possibility that a vehicle taken from one set might not have a match in the other set. In the 
first three cases, there is always a match for each vehicle in the smaller set (or in either set for 
case iii). The methods developed in this research can be used for any one of these four cases as 
the methods for screening (explained in Section 4.4) can be applied to screen out vehicles that do 
not cross both sites. Without loss of generality, the methods (of the first stage) will be described 
for case ii where for each vehicle in D a match will be identified in U, which has more samples 
than set D. Then, in the second stage, the screening methods will be applied to the results of the 
first stage to determine which matched vehicles will be kept and which ones should be 
eliminated. In Chapter 6, the models are applied to datasets that fall into both case ii and case iv.  

Let XU and XD be two matrices with the same number of columns that denote the data collected 
at an upstream station and a downstream station, respectively; and XU

i and XD
j denote rows of 

these two matrices that correspond to the measurements (e.g., axle weights) taken for vehicle i at 
the upstream station and for vehicle j at the downstream station. Further, assume that the 
timestamps indicating arrival times of vehicles at each station are given and denoted by tU

i for 
the upstream vehicles and tD

j for the downstream vehicles. Given XU, XD, tU
i and tD

j the vehicle-
matching problem involves determining XU

i and XD
j that are generated by the same vehicle. Let 

ij be a binary variable that equals 1 if XU
i and XD

j belong to the same vehicle and equals zero 
otherwise. The main objective of the matching algorithms is to estimate all ij’s with minimum 
error.  

As mentioned before, a two-stage approach is proposed in this research for the re-identification 
problem. In the first stage, for each vehicle in D a match is found in U. This is accomplished by a 
Bayesian method as explained below. In the second stage, a new method is proposed to screen 
out mismatched vehicles to improve accuracy. These two stages are explained in detail in the 
subsequent sections.  

For the first stage of re-identification, each vehicle in D needs to be matched to the most similar 
vehicle in U. Since timestamp information is available for each vehicle, a reasonable “search 
space” from the upstream vehicle records (U) can be identified based on travel times. Before the 
search starts to match a downstream vehicle j to an upstream vehicle i, a search space for vehicle 
j, denoted by Sj, is determined based on the timestamps at two stations (tU

i and tD
j) and some 

defined time window. The variability in travel time can be captured by specifying minimum and 
maximum values for travel times. The minimum value (minTime) can be easily predicted based 
on an assumed maximum travel speed and the distance between the two stations. The maximum 
value can exhibit a large variation depending on the individual vehicle speeds, travel distance, 
and traffic-flow interruptions between the two stations, and any pick-up, delivery, or rest stop the 
driver may make. The maximum value (maxTime) can be taken as a multiple of the minimum 
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time if no data exists or can be based on observations. The search space for a downstream 
vehicle j is then determined as follows: 

 
Sj = {i ϵ U | tD

j – maxTime ≤  tU
i ≤  tD

j – minTime }   (1) 
 

Depending on the difference between maxTime and minTime or simply time window, the number 
of vehicles among which a match can be found varies. Larger time windows will result in a 
larger number of vehicles in the search space, which can make the matching problem more 
difficult.  

4.2 DISTANCE-BASED METHOD 

Perhaps the simplest method to re-identify vehicles involves calculating the Euclidean distance 
and matching vehicle pairs that give the smallest distance. This method is generally used as a 
baseline and does not produce very accurate results. The distance-based method entails 
calculating a weighted Euclidian distance measure as shown below. If N is the number of vehicle 
attributes (e.g., axle weights and spacing) collected at two WIM stations, the key steps of this 
method can be described as follows:  
For each vehicle j in D 
    Identify a search space (see equation 1), Sj   U 
       For each iSj 

           Calculate   



N

k

k
i

k
j

k
ikij xxxwd

1

2
/  

        im = argmin dij 
           i 
     Match vehicle j to im, i.e., ij =1 if i=im 
 
The distance-based method is only used as a baseline for assessing the results of the Bayesian 
method. It is not suggested as a viable method for solving the re-identification problem. The 
weights (wk) can be optimized by a multidimensional optimization algorithm. However, based on 
the analyses performed, matching accuracy does not change significantly as these weights are 
optimized. Therefore, all weights (wk) are set to one in calculating the distance (dij).  

4.3 BAYESIAN METHOD 

The Bayesian re-identification method relies on calculating the posterior probability of a match 
between two vehicles given two sets of data points collected for a vehicle pair (i,j) at the 
upstream and downstream stations. A vehicle j at the downstream station is matched to the 
upstream vehicle i that yields the largest probability of a match. The steps of the Bayesian 
method are formally explained below.  
 
For each vehicle j in D 
    Identify a search space (see equation 1), Sj   U 
       For each iSj 
           Calculate P(ij = 1|data) 
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        m = argmax P(ij = 1|data)  
           i 
     Match vehicle j to m, i.e., ij =1 if i=m 
  
Once a search space is identified, P(ij = 1 | xij), the conditional probability that XU

i and XD
j 

belong to the same vehicle given data (i.e., xij = xU
i U xD

j), can be computed by the Bayes 
theorem as follows:  

1   (2) 

 
In order to calculate this posterior probability, both the two conditional probability density 
functions (i.e., f(xij|ij=1) and f(xij|ij=0)) and the prior probabilities (i.e., P(ij=0) and P(ij=1)) 
are needed. The functions f(xij|ij=1) and f(xij|ij=0) are the density functions that characterize the 
collected data at two stations when it belongs to the same vehicle and different vehicles, 
respectively. Figure 4.5a-b and Figure 4.5c-d illustrate how the data would distribute for 
observations when ij=1 and ij=0, respectively, for a simple case when only a single attribute is 
considered. As it can be observed from these figures, when vehicles match (i.e., upstream and 
downstream measurements belong to the same vehicle) there is high correlation between the 
measurements, which is critical for re-identification to work effectively. On the other hand, when 
random data for upstream and downstream measurements are plotted the correlation disappears 
as expected and a roughly uniform distribution of points is observed (Figure 4.5c-d). Since this 
amounts to an approximately uniform value for the density function, f(xij|ij=0) in equation (2) 
can be replaced by some arbitrary constant (). Furthermore, the travel-time information can be 
used to approximate the prior distribution P(ij=1), as opposed to assigning a fixed value to the 
prior. If the probability density function for the travel time is denoted by, f(tij) then, the posterior 
probability in equation (2) can be simplified to: 

1 ~   (3) 

where  is a positive arbitrary constant accounting for f(xij|ij=0) and f(ij=0). Since in matching 
vehicles only relative magnitude of this posterior probability is important, the selected value of  
is not critical. In this research the simplified version (equation 3) is used which does not require 
the estimation of f(xij|ij=0), an advantage in terms of model calibration and development.  

In order to use equation 3, two probability distributions, i.e., f(xij|ij=1) and f(tij), are needed to 
calculate the posterior probability. These probability density functions are found based on fitting 
finite mixture models to the training dataset as explained in Chapter 5. Finite mixture modeling 
is a well-known, semi-parametric technique for fitting a statistical distribution that is a weighted 
sum of multiple distributions. A mixture model is able to model quite complex distributions and 
can handle situations where a single parametric family cannot provide a satisfactory model 
(McLachlan and Peel 2000).   
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Figure 4.5 Spacing (ft) between axle 3 and 4 (a&c) and weight (kips) of axle 2 (b&d) at two stations for matched 
and mismatched trucks 

4.4 METHODS FOR SCREENING MISMATCHED VEHICLES 

When vehicle re-identification methods presented in Sections 4.2 and 4.3 are applied to a dataset, 
inevitably some vehicles get mismatched, especially when not all vehicles in the upstream or 
downstream cross both sites (case iv as explained in Section 4.1). In this section, several 
screening methods are proposed to control the error rate caused by mismatching. The main 
objective is to screen out vehicles that cross the downstream station but do not appear in the 
upstream. Even though these screening methods are explained in the context of the Bayesian 
model, they are equally applicable to any other re-identification algorithm that match vehicles 
based on an estimated metric such as similarity distance and probability.  

The overall idea is to devise a secondary process to improve accuracy by applying a certain rule 
to the output of the re-identification method to determine whether or not the matched pairs of 
vehicles will be kept. In other words, for each paired vehicles a test will be performed to classify 
the matched pair either as a true match or false positive. Those classified as true match will then 
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constitute the total vehicles that are matched, which obviously will be less than the original 
number of matched vehicles. Those classified as false positive will not be matched at all. 
Consequently, the accuracy is improved at the expense of matching fewer vehicles than the 
original number matched by the re-identification algorithm.   

A simple or naïve approach to screening mismatched vehicles would be to impose a threshold on 
the value of the posterior probability P(mj=1| xmj) for the matched pairs and retain only those 
matched vehicle pairs that produce a higher probability than the threshold value. However, this 
method may result in eliminating too many vehicles to improve the accuracy.  

Several other types of methods are proposed in this research. The proposed screening method 
involves examining not only the posterior probability P(mj=1| xij) for the matched vehicle pairs, 
which is the largest value for a downstream vehicle j being assigned to an upstream vehicle m 
among all vehicles in the search space, i.e., i ϵ Sj,  but also the second largest posterior 
probability P(kj=1| xkj), for the vehicle pairs j and k, where k ϵ Sj. The rationale behind this 
approach is as follows. If the vehicle pairs are truly matched, the difference between P(mj=1| xij) 
and P(kj=1| xkj) is expected to be much larger as compared to the same difference for 
mismatched (false positive) vehicles. Because, for false positives both the largest and the second 
largest probabilities, i.e., P(mj=1| xij) and P(kj=1| xkj), effectively measure the same thing (they 
are both for mismatched pairs of vehicles) and consequently are expected to have similar values . 
On the other hand, for truly matched vehicles the gap between P(mj=1| xij) and P(kj=1| xkj) is 
expected to be significantly larger as each probability measures a different scenario.  This is 
illustrated in Figure 4.6a and Figure 4.6b.  

 

Figure 4.6 Distribution of largest and second largest probabilities from the Bayesian Model when vehicles are 
mismatched (a) and matched accurately (b) for the WIM scenario 

To utilize both the largest and the second largest posterior probabilities (i.e., P(mj=1| xij) and 
P(kj=1| xkj), which are denoted by P1 and P2, respectively, for the sake of simplification in 
screening mismatched vehicles three different criteria are proposed and tested. The objective of 
these criteria is to classify the points in Figure 4.6-a as false positive while trying to keep as 
many points on Figure 4.6-b as true matches.  
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 These three criteria are explained below: 
 45o Line: As it can be observed in Figure 4.6-a, a significant portion of the observations 

for mismatched vehicles are clustered around a 45o line that goes through the origin. 
Therefore, the following criterion seems to be a plausible option: 
If ∆ then classify as "true match"

else classify as "mismatched"                         
     

where  is a user-specified threshold value.  
 

 Ratio: As discussed above, it is expected that P1 and P2 would have similar values when 
the vehicles are not matched correctly and the opposite would be true otherwise. For a 

defined threshold value  the criterion for ratio method is as follows: 
If / ∆ then classify as "true match"

else classify as "mismatched"                        
    

 

 Mixture Model: For this method, mixture models are fitted to the data of Figure 4.6-a 
and Figure 4.6-b separately to obtain bivariate density functions for the distribution of P1 
and P2 in these two distinct cases. The probability distribution fitted to the data in Figure 
4.6-b is denoted as pdf1 and the one fitted to the data in Figure 4.6-a as pdf0. The criterion 
for this method is as follows: 

If / ∆ then classify as "true match"
else classify as "mismatched"                                              

    

 The application of these three criteria to the dataset and their performance are explained 
in Chapter 6.0. The next chapter presents the finite mixture modeling technique that is used to 
estimate the necessary probability density functions of the Bayesian model.  
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5.0 FINITE MIXTURE MODELS  

The two probability distributions (i.e., f(xij|ij=1) and f(tij)) needed to calculate the posterior 
probability specified in equation 3 are found based on fitting statistical finite mixture models to 
the training datasets. Finite mixture modeling is a well-known, semi-parametric technique for 
fitting a statistical distribution that is a weighted sum of multiple distributions. A mixture model 
is able to model quite complex distributions and can handle situations where a single parametric 
family cannot provide a satisfactory model (McLachlan and Peel 2000). Given a random dataset 
with an unknown distribution, finite mixture models provide a flexible framework to estimate 
probability density function for each of the components composing the model. Because of their 
usefulness as an extremely flexible method of modeling, finite mixture models have gained 
attention from many disciplines including astronomy, biology, genetics, medicine, psychiatry, 
economics, engineering, and marketing. Besides their direct application in data analysis and 
providing descriptive models for probability distributions, other applications of mixture models 
in these disciplines include image analysis, spectral analysis, cluster and latent class analysis, 
discriminant analysis, and survival analysis. 

In mixture modeling, the unknown density of a multivariate random vector Y, f(y), is assumed to 
be written in the form  

,)()(
1




g

i
ii yfyf     (4) 

where the fi(y)’s are component densities and i’s are nonnegative numbers that sum to one. The 
quantities 1, …, g are called the mixing proportions. Even though there are various flavors of 
mixture modeling, mixture models with normal components, where each fi(y) is a (multivariate) 
normal density, are quite common and have many applications. An in-depth account of mixture 
modeling can be found in McLachlan and Peel 2000. In this research, mixture models with 
normal components are fitted to the data as any continuous distribution can be approximated 
arbitrarily well by a finite mixture of normal densities. In order to fit a g-component mixture 
model, the parameters of the normal densities (mean and covariance) and the mixing proportions 
need to be estimated. The number of parameters to be estimated depends on the number of 
components (g) and the dimension or size of the random vector Y. For example, if a two-
component normal mixture model is fit to a multivariate dataset with three dimensions, then 
there are three means and six covariates per component and one mixing proportion () to be 
estimated – for a total of 19 parameters. The estimation of these model parameters is 
conveniently achieved through the use of the well-known expectation maximization (EM) 
algorithm (Dempster et al. 1977), which is explained briefly in the next subsection. 

5.1 EM ALGORITHM  

The Expectation Maximization (EM) algorithm is a tool for simplifying and solving complex 
maximum likelihood problems, such as those encountered in mixture models (Trevor et al. 
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2001). The maximum likelihood function is used for the estimation of component parameters 
that make up the mixture model. The EM algorithm is explained below for a simple case that 
involves a two-component mixture model for a univariate dataset.  
 
Let the mixture model consist of two components, each having a Gaussian univariate 
distribution, denoted by random variables Y1 and Y2. Then, each component will have two 
parameters that need to be estimated, the mean and the variance: 
 

~ ,   (1) 
~ ,   (2) 

 
Each point in the dataset comes either from Y1 or Y2. Thus a random variable Y can be written 
as: 

1   (3) 
 
Where α is either 0 with probability 1-π, or 1 with probability π. Thus the density function f(y) of 
random variable Y can be written as the sum of component normal densities  with 
parameters ,  
 

1   (4) 
 
Where 
 0 1  (5) 
 
The general representation of the unknown density function  for the univariate random 
variable Y can be written as: 
 

∑   (6) 
 

Where  represents component densities which are normal, and s are the mixing 
proportions which are non-negative numbers that add up to one. 
 

0  1, ,   (7) 
∑ 1  (8) 
 
The density function given in equation 6 is referred to as a g-component finite mixture density. 
Let , , … ,  be the observed variables; in other words, each point of the given data. Based on 
such data, parameters of the normal densities and the mixing proportions need to be estimated for 
specifying the g-component mixture model. In other words, to fit a g-component mixture model, 
the mean μk, variance σk², and the mixing proportion πk need to be estimated for each 
component. In order to fit the density function model to the given data, the method that is 
generally used is the maximum likelihood estimation.  
The parameters that need to be estimated for the example problem are: 
 

, , , , , ,   (9) 
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The maximum likelihood function based on n observations is: 
 

; ∏   (10) 
 
where represents the ith observation, and Z is the set of given data. 
Equation 10 can be expanded as: 
 

; ∏ 1   (11) 
 
Because of the complexity of solving the likelihood function in a multiplication form, the 
logarithms of both sides are taken. This changes the multiplication into a summation.  
The log-likelihood function based on n number of data points becomes: 
 

; ∑ log 1   (12) 
 
This likelihood function is still difficult to solve because of the sum of the terms inside the 
logarithm. However, by the help of unobserved latent variables  taking values 0 or 1 as 
mentioned in equation 3, it can be said that if  is equal to 1 then  comes from model 2, 
otherwise  comes from model 1. With the assumption that the values of   are known, the log-
likelihood would be: 
 

; , ∑ 1 log log ∑ 1 log log 1  (13) 
 
The maximum likelihood estimates of ,  are the sample mean and variance of those data 
with 0, and likelihood estimates ,  are the sample mean and variance of those data 
with 1. 
In reality, the latent variables are unknown. In order to find these variables as well as the 
component parameters, an iterative approach is taken in the EM algorithm. 
 
The first step is to make initial guesses about the parameters , , , , . Generally, when 
making the initial guesses the mixing proportions are given equal probability for each 
component; in this case, 0.5. For the estimates of the means, random variable s are taken 
randomly in two groups and their average is taken. The estimates for the variances can be 
assumed equal, and can be set to the overall variance which is 
 

∑   (14) 

 
The second step or the expectation step (E-step), involves computing the expected value  of  
which is also called as the responsibility of model 2 for observation . The initial or best 
estimates of the parameters , ̂ , , ̂ ,  are going to be used for computing . 
 

̂   1,2, … ,   (15) 
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Where is the normal probability density function with the estimated parameters for 
component k.  
The responsibilities obtained in equation 15 are then used in the third step, or the maximization 
step (M-step), for computing the estimates of the parameters. The weighted maximum likelihood 
fits for means, variances, and mixing probability are computed as follows: 
 

̂
∑ 1 ̂

∑ 1 ̂
 

̂
∑ ̂

∑ ̂
 

∑ 1 ̂ ̂
∑ 1 ̂

 

∑ ̂ ̂
∑ ̂

 

̂
 

The expectation and maximization steps are iterated until convergence. These computations in 
each step can be extended to include more than two components. Also, each component may be 
multidimensional consisting of multivariate data. 
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6.0 APPLICATIONS OF THE RE-IDENTIFICATION 
ALGORITHMS 

The vehicle re-identification methods described in Chapter 3.0 are applied to selected archived 
vehicle datasets from WIM sites in Oregon. The locations of the selected sites and other relevant 
details are shown in Figure 6.1. This diagram shows three WIM sites (e.g., Klamath Falls Port of 
Entry (KFP), Bend Weigh Station (BND), and Lowell Weigh Station (LWL)), and the total 
number of transponder-equipped trucks that crossed these stations in October 2007. Based on the 
unique transponder numbers, the total flows between the sites are indicated on the diagram by 
arrows. Link 234 shows the flow of trucks from KFP to LWL whereas Link 231 represents the 
trucks that cross both KFP and BND. Other transponder-equipped trucks that crossed only one of 
the sites are indicated by dotted arrows. Table 6.1 shows the total number of all trucks (including 
those without transponders) that crossed all three sites.  

 

Figure 6.1 Link 231 and Link 234 and the number of trucks with transponders crossing these sites in October 2007 

U
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The re-identification methods are first applied to Link 234 data and then to Link 231 data. In 
each case, the total link data are split into training and testing datasets as explained before. The 
parameters needed for mixture models are estimated based on the training dataset. Application of 
the re-identification models involves matching downstream vehicles to upstream vehicles. 
Therefore, two datasets need to be prepared as inputs: one for the downstream and one for the 
upstream station.  

 
Table 6.1 Number of trucks observed at three stations, October 2007 data 

Trucks  Node 17 (KFP) Node 14 (LWL) Node 18 (BND) 
With Transponders 8,670 3,811 5,956 
Without Transponders 16,969 11,590 17,653 
Total 25,639 15,401 23,609 
% With Transponders 34% 25% 25% 
% Class 9 (among all trucks) 67% 58% 48% 
 
In testing the models, for Link 234 two scenarios are considered in creating the datasets for the 
downstream station. In the first scenario, only those common trucks that cross both LWL and 
KFP stations are selected as the downstream data. In other words, the downstream data only 
consists of a subset of the 2,520 trucks that constitute the Link 234 data. Even though this 
scenario may not be realistic, this simpler case is tested to see how the algorithms will perform 
when it is known that for every downstream vehicle there is a match in the upstream. In addition, 
depending on the proximity of the WIM stations and the transportation network, this first 
scenario may well be applicable. In the second scenario, an “open system” is considered where 
the downstream station includes both common trucks and those that cross only the downstream 
site. In other words, the test data for the downstream is a subset of the combined data of both link 
data (2,520 trucks) and those that enter at some midpoint (1,291). For Link 234, only the second 
scenario (open system) is analyzed. In all cases, the upstream dataset consists of all trucks 
observed at the upstream point (KFP), including those that do not carry transponders. 

As mentioned in Chapter 3.0, the performance of the re-identification models is evaluated for 
AVC data and WIM data separately. AVC data contain only vehicle length and axle spacing 
whereas WIM data contain both the AVC data and axle weights. The results for Link 234 and 
Link 231 are presented below.    

6.1 APPLICATION OF THE METHODS TO LINK 234 DATA 

Applying the Bayesian re-identification model involves two key steps: model training and model 
testing. In model training, both the conditional density function, f(xij|ij=1), and the probability 
distribution for travel time, f(tij), are obtained by fitting mixture models to a training dataset 
which consists of common vehicles that are correctly matched based on the tag numbers. The 
estimated probability density function for travel time, which has three components, is shown in 
Figure 6.2. Since f(xij|ij=1) is multidimensional it cannot be drawn. Since there are two cases to 
be analyzed, one for AVC and one for WIM data, two different conditional density functions, 
f(xij|ij=1), are needed. For the AVC data, the total vehicle length and four axle spacings (e.g., 
axle spacings 1-2, 2-3, 3-4, and 4-5) are used as the attribute data, which results in a five-
dimensional density function for f(xij|ij=1).  For the WIM data, in addition to the five-vehicle 
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attributes considered in AVC case, five axle weights (e.g., axles 1 to 5) are also used as the 
attribute data, which results in a 10-dimensional density function for f(xij|ij=1). These mixture 
models are estimated with special software called EMMIX (McLachlan and Peel 2000). Only 
five axles are considered in fitting the mixture distributions since the predominant vehicle type is 
FHWA Class 9 at both stations.  
 
 

 

Figure 6.2 Travel-time histogram for Link 234 and a probability density function (pdf) fit by mixture distributions  

The variability of travel time between the two stations plays a critical role in vehicle re-
identification as the potential matches are usually identified by considering time windows for the 
travel time.  Larger variation results in considering more samples as potential matches, which 
makes the problem more difficult. Figure 6.2 show the histogram of travel times for the vehicles 
in the training sample and a probability distribution fitted based on mixture models. The 
minimum travel time between the stations at the 55 mph speed limit would be about 158 
minutes.  Based on this figure, a travel-time window between 120 and 316 minutes is used to 
identify potential matches for a vehicle. Based on these values, on average about 155 vehicles 
need to be considered as potential candidates in finding a match. In other words, on average, 
there are about 155 trucks observed in the upstream within an interval of 196 minutes (316-120 = 
196).  

6.1.1 Testing Scenario 1: Using Only Common Trucks that Cross Both Sites 

In the testing step, the models estimated based on the training dataset are applied to the testing 
data. Training and testing datasets are mutually exclusive. For scenario 1, 1,000 common trucks 
that cross both KFP and LWL stations are selected. The attribute data collected at the LWL 
station for these 1,000 vehicles constitute the downstream data. The upstream data, as mentioned 
before, includes all trucks that cross KFP station.   
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Figure 6.3 Accuracies of the two-vehicle re-identification algorithms  

Figure 6.3 shows the accuracy of the Bayesian model and the distance-based model for both the 
AVC and WIM scenarios. As mentioned before, the distance-based method is only used for 
comparison purposes since its limitations are clear. As it can be observed, the Bayesian method 
performs very well in both scenarios and match vehicles with 91% and 87% accuracy for the 
WIM and AVC scenarios, respectively.  

Figure 6.4 shows the results of the screening methods described previously in Chapter 4.4 when 
applied to the output of the Bayesian method for the WIM scenario. For the WIM scenario, when 
for all 1,000 vehicles a match is found by the Bayesian model, 86 of them turn out to be 
mismatched (hence the 9% error rate). The purpose of the screening process is to minimize the 
total number of mismatched vehicles by omitting some of the vehicles (in particular the 
mismatched ones) as unmatched or by classifying them as mismatched as explained in Section 
4.4. The criteria or rules to do so are also explained previously.  
  
Figure 6.4-a shows the result for the simple or naïve approach to screening mismatched vehicles. 
In this case, the matched pairs of vehicles are being classified as “true match” and “mismatch” 
based on a single variable (P1). As it is evident, this method eliminates a significant number of 
vehicles from being matched to reduce the percent error. In these plots, the percent error is 
calculated by dividing the mismatched vehicles remaining after the screening step by the total 
vehicles matched, which varies depending on the selected threshold. This total number of 
vehicles matched is shown on the secondary vertical axes of the plots in Figure 6.4.  

The results for three methods described above (i.e., 45o Line, Ratio, and Mixture Model) are 
presented in parts b-d of Figure 6.4. Among the four methods, the Ratio and Mixture Model 
methods clearly perform better. To easily compare the performance of these four methods, 
tradeoff curves are constructed as shown in Figure 6.5-a. Since there are two conflicting 
objectives (i.e., minimizing percentage error and maximizing the total vehicles matched), these 
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tradeoff curves provide a convenient way to visualize which method is superior in achieving both 
objectives simultaneously. From this figure, it is apparent that the Mixture Model method 
dominates other options across all threshold values. However, the Ratio method closely follows 
the Mixture Model method, and may be the preferred option since it is simpler to implement.  

A similar analysis is also carried out for the AVC scenarios to reduce the 129 (13% of 1,000 
vehicles) mismatched vehicles. For brevity, only the tradeoff plots of the four screening criteria 
are presented, as shown in Figure 6.5-b. In this case, both Mixture Model and the Ratio methods 
provide very similar results. Based on these analyses, it seems that the Ratio method would be a 
good criterion for screening mismatched vehicles as it has good performance and is simpler to 
implement.    

 

 

Figure 6.4 Change in error and total vehicles matched for the WIM scenario as the threshold varies for four 
screening criteria: (a) naïve approach; (b) 45o line; (c) ratio; and (d) mixture model.  
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Figure 6.5 Tradeoff curves of the four screening criteria for the WIM scenario (a) and for the AVC scenario (b) 

6.1.2 Testing Scenario 2: Open System 

For this scenario, those trucks that cross LWL but not KFP are also included in the downstream 
dataset. In particular, the testing dataset for the downstream now includes a total of 1,400 trucks, 
out of which 405 cross only LWL station and 995 (common trucks) cross both sites. 
Consequently, without applying the screening methods there would be a significant percentage 
of error if only the Bayesian method is applied to find a best match for every downstream vehicle 
in the upstream station. Even if all common trucks are matched accurately, still there would be 
29% error (29% = 405/1,400) since 405 trucks never crossed the upstream station. Therefore, the 
screening methods play a more critical role in accurately matching vehicles in open systems.  

The results for this scenario are graphically summarized in Figure 6.6 for the AVC data, and 
Figure 6.7 and Figure 6.8 for the WIM data. Figure 6.8 is the same as Figure 6.7 except the axes 
are scaled to provide more detailed information. The vertical axis in all figures shows the percent 
error, which is calculated simply by dividing the total number of vehicles mismatched to the total 
number of vehicles matched (shown in the horizontal axis). In addition, Table 9.1 and Table 9.2 
in Appendix A provide the actual numbers of vehicles that are matched or mismatched at each 
threshold value in each screening method.  

First, it can be observed that the re-identification methods give more accurate results when axle 
weights are used in addition to the axle spacing since the results for the WIM data are much 
better as compared to those of the AVC data. This result is expected as more variables contain 
additional information that can be used to distinguish between vehicles.  

Second, in terms of the four screening methods, the 45o line method performs better than others 
in both cases as this method more effectively reduces the mismatch error. Even though the ratio 
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method was performing very well in Scenario 1, it is not effective when there are many vehicles 
that need to be screened out, as in the case of this open system.  

Third, when the WIM data is used for re-identification, vehicles can be matched effectively with 
a reasonable level of error (8-10%) while the total number of vehicles being matched is kept 
reasonably close to the actual number of vehicles crossing both the upstream and downstream 
sites. In this case, there are 995 trucks that cross both sites – which is indicated by the vertical 
dashed line in the figures. For example, by selecting 0.01 for the threshold value in the 45o line 
method, 92%, or 793 trucks, are matched accurately out of 866 trucks (see Table 9.2 in Appendix 
A), which is about 87% of the 995 common trucks that cross both sites. In this example, of the 
73 that are mismatched (866-793=73), 43 do not appear in the upstream station and the 
remaining 30 cross the upstream site but are not matched accurately. In other words, the 45o line 
method screened out 362 of the 405 (which do not cross the upstream site) but not the 43 that 
ended up being matched to the upstream vehicles.  

 

Figure 6.6 Tradeoff curves of the four screening criteria for the AVC scenario for Link 234 
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Figure 6.7 Tradeoff curves of the four screening criteria for the WIM scenario for Link 234 

 

Figure 6.8 Tradeoff curves of the four screening criteria for the WIM scenario for Link 234 
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6.2 APPLICATION OF THE METHODS TO LINK 231 DATA 

Figure 6.9 show the histogram of travel times for the vehicles in the training sample and a 
probability distribution fitted based on mixture models. The minimum travel time between the 
stations at the 55 mph speed limit would be about 158 minutes.  Based on actual travel times, a 
travel-time window between 146 and 273 minutes is used to identify potential matches for a 
vehicle. Based on these values, on average, about 107 vehicles need to be considered as potential 
candidates in finding a match. In other words, on average, there are about 107 trucks observed in 
the upstream within an interval of 127 minutes (273-146 = 127).  

 

Figure 6.9 Travel-time histogram for Link 231 and a probability density function (pdf) fit by mixture distributions  

For the analyses of Link 231, those trucks that cross BND (the downstream point) but not KFP 
(the upstream point) are also included in the downstream dataset. In particular, the testing dataset 
for the downstream site now includes a total of 2,000 trucks, out of which 983 cross only BND 
station and 1,017 (common trucks) cross both sites. Consequently, without applying the 
screening methods there would be a significant percentage of error if only the Bayesian method 
is applied to find a best match for each downstream vehicle in the upstream station. Even if all 
common trucks are matched accurately, there still would be 49% error (49% = 983/2,000) since 
983 trucks never crossed the upstream station. Therefore, the screening methods play a more 
critical role in accurately matching vehicles in open systems.  

Similar to the analysis done for Link 234, the upstream dataset (KFP) encompasses all trucks, 
including those do not carry transponders.  

The results for Link 231 trucks are graphically summarized in Figure 6.10 for the AVC data, and 
Figure 6.11 and Figure 6.12 for the WIM data. Figure 6.12 is the same as Figure 6.11 except the 
axes are scaled to provide more detailed information. In addition, Table 9.3 and Table 9.4 in 
Appendix A provide the actual numbers of vehicles that are matched or mismatched at each 
threshold value in each screening method.  

-

0.01 

0.01 

0.02 

0.02 

0.03 

0.03 

0.04 

0.04 

0

100

200

300

400

500

600

150 170 190 210 230 250 270 290 310

pd
f

Fr
eq

ue
nc

y

Travel time (minutes)

Frequency

pdf



 

38 
 

 
Similar to the observations made before for Link 234, it can be observed that the re-identification 
methods give more accurate results when axle weights are used in addition to the axle spacing 
since the results for the WIM data are much better as compared to those of the AVC data.   

Second, in terms of the four screening methods, the 45o line method performs again better than 
the other methods as this method is able to more effectively reduce the mismatch error. For the 
WIM scenario, the naïve method closely follows the 45o line method but, in general, it does not 
perform better.  

Third, when the WIM data is used for re-identification, vehicles can again be matched effectively 
with a reasonable low level of error (8-10%), while the total number of vehicles being matched is 
kept reasonably close to the actual number of vehicles crossing both the upstream and 
downstream sites. In this case, there are 1,017 common trucks that cross both sites – which is 
indicated by the vertical dashed line in the figures. For example, by selecting 0.01 for the 
threshold value in the 45o line method, 95%, or 815 trucks, are matched accurately out of 861 
trucks (see Table 9.4 in Appendix A), which is about 85% of the 1,017 common trucks that cross 
both sites. In this example, of the 46 that are mismatched (861-815=46), 34 do not appear in the 
upstream station and the remaining 12 cross the upstream site but are not matched accurately. In 
other words, the 45o line method screened out 949 of the 983 (which do not cross the upstream 
site) but not the 34 that ended up being matched to the upstream vehicles.  

 

Figure 6.10 Tradeoff curves of the four screening criteria for the AVC scenario for Link 231 
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Figure 6.11 Tradeoff curves of the four screening criteria for the WIM scenario for Link 231 

 

Figure 6.12 Tradeoff curves of the four screening criteria for the WIM scenario for Link 231 
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When these results are compared to those of Link 234, it can be observed that the overall error 
rates for Link 231are lower. Figure 6.13 shows the results when the 45o line method is used as 
the screening tool and the WIM data is used for the re-identification. The horizontal axis shows 
the total number of vehicles being matched as a percentage of the common trucks for each link 
(1,017 for Link 231 and 995 for Link 234). Since the total number of common trucks is different 
on Links 231 and 234, expressing the total vehicles matched as a percentage allows a better 
comparison. The results shown in Figure 6.13 can be explained by the fact that the travel times 
on Link 234 exhibit larger variance (see the longer tail of travel-time distribution in Figure 6.2 
and compare it with Figure 6.9 for Link 231). Consequently, the average number of vehicles in 
the search space is larger for Link 234 (155 for Link 234 vs. 107 for Link 231). This makes it 
more challenging to find a correct match for vehicles on Link 234.  

 

Figure 6.13 Comparing the results for Links 234 and 231 when WIM data is used for matching trucks  
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7.0 CONCLUSIONS  

This project examined the use of vehicle-attribute data that are typically obtained from WIM and 
AVC sensors for anonymously re-identifying commercial vehicles so that their movements can 
be tracked. Tracking the movement of individual vehicles between different data collections sites 
provides valuable information for the estimation of travel times, travel delays, and origin-
destination (OD) flows. Even though the data from transponder-equipped trucks can also be used 
for the estimation of travel times and OD flows, these trucks represent less than half of all trucks, 
or a small fraction, depending on the selected sites. For example in Oregon, on average, the rate 
of transponder-equipped trucks is about 40%. In addition, vehicle re-identification based on 
vehicle-attribute data does not raise any privacy concerns as is the case with other types of 
vehicle-tracking technologies (AVI, license plate recognition, etc.).  

This research shows that it is feasible to re-identify trucks between WIM sites that are separated 
by long distances (i.e., more than 100 miles). By using the WIM data (i.e., axle weight data) and 
AVC (i.e., axle spacing) data from three different stations in Oregon, the research team has 
developed new methods to effectively re-identify trucks. Since the datasets include both the 
vehicle-attribute data (e.g., axle weights and axle spacing) and the corresponding unique 
transponder numbers, the true matching for those trucks that are equipped with transponders is 
known. The archived data of transponder-equipped trucks provide the needed data for model 
development and testing.  

In this project, a new two-stage approach is developed to accurately match vehicles crossing 
upstream and downstream stations. For the first stage, a Bayesian method is developed where the 
necessary probability distributions are determined by fitting statistical mixture models to the 
training datasets. With the Bayesian method, for each downstream vehicle a best match is found 
in the upstream dataset. When it is known that all downstream vehicles also cross the upstream 
point, the Bayesian method alone can be applied to match trucks. To evaluate how this method 
would perform, the model is applied to test datasets taken from two sites that are separated by 
145 miles. In this selected test dataset, for each one of the 1,000 downstream trucks a match 
needs to be found from10,581 upstream vehicles. It is found that the downstream trucks are 
matched to upstream trucks with 91% accuracy when both AVC and WIM data are used. This 
level of accuracy is significant given the fact that the upstream and downstream stations are 145 
miles apart.  

Even though the Bayesian method gives the best match for each truck, it does not account for the 
fact that some downstream vehicles may enter the road at some midpoint between the two 
stations and hence do not cross the upstream stations at all. Consequently, a mechanism is 
needed to separate out those vehicles that enter the road at a midpoint.  

For the second-stage process, several methods are developed to screen out mismatched vehicles 
produced by the re-identification algorithm in the first stage, primarily those vehicles that enter 
the roadway at some midpoint between the upstream and downstream sites. These methods can 
be readily applied to any re-identification algorithm that computes a similarity metric. These 
screening models allow the user to trade off the total number of matched vehicles and the error 
or mismatch rate by adjusting a threshold value. When these methods are applied to sample WIM 
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datasets, it is observed that trucks are matched with approximately 90% accuracy while the total 
number of trucks being matched is about 95% of the actual common trucks that cross both 
upstream and downstream sites. If one is willing to match fewer trucks but improve the accuracy, 
the threshold value can be set to a larger value. For example, trucks can be matched with 98% 
accuracy if one is willing to only match about 40% of all common trucks. Depending on the 
application type, these methods allow the user to trade off the accuracy versus total vehicles 
being matched by adjusting a threshold parameter.  

It is also observed that when travel times of vehicles between the upstream and downstream sites 
exhibit larger variation the re-identification becomes more challenging. In other words, 
mismatch rate increases as travel-time variance increases.  

Overall, for travel-time estimation purposes, the methods presented in this report can be used 
effectively to match commercial vehicles crossing two data collection sites that are separated by 
long distances. The second phase of this research is underway to implement the methods on 
additional datasets and to estimate OD flows given a network created by WIM sites as nodes. 
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9.0 APPENDICES 

 
 
 
 

APPENDIX A 
 

RESULTS OF THE RE-IDENTIFICATION ALGORITHMS 
 

 
Notation used in the next four tables:  

 0 =  correctly matched;  
 1 = mismatched even though vehicle crossed the upstream WIM station   
 -1 = mismatched and the vehicle never crossed the upstream WIM station 

The values in each table indicate the number of trucks for which a match is found in the 
upstream site. The delta value is the threshold used in the screening methods.  
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Table 9.1 Results of the re‐identification methods when applied to the Link 234 AVC data 

 
 

Delta 0 1 -1 0 1 -1 0 1 -1 0 1 -1
0.00000 907 88 405 907 88 405 907 88 405 907 88 405
0.00001 900 87 199 900 85 195 907 88 405 907 88 284
0.00100 889 82 152 885 80 144 907 88 405 905 86 228
0.01000 834 76 114 831 72 106 907 86 404 903 86 221
0.05000 770 66 83 755 56 74 904 84 396 899 82 207
0.07500 737 63 72 714 52 62 900 82 391 896 79 201
0.10000 709 61 64 680 50 57 892 82 384 893 75 197
0.12500 684 61 58 651 45 52 891 80 378 893 73 196
0.15000 674 59 55 639 41 50 884 75 375 890 71 192
0.17500 660 54 50 625 40 46 882 72 374 883 68 190
0.20000 650 52 48 609 33 40 881 70 370 881 67 187
0.22500 638 51 44 592 28 36 879 68 363 879 66 186
0.25000 626 49 41 579 24 35 874 67 359 875 66 184
0.27500 607 47 38 559 20 30 872 64 351 869 64 183
0.30000 597 46 37 540 19 29 868 61 343 862 64 181
0.32500 581 43 36 522 16 28 861 59 338 858 63 180
0.35000 568 41 35 511 13 26 858 57 334 855 61 180
0.37500 547 40 34 491 12 24 857 55 331 850 57 179
0.40000 526 38 33 474 12 23 853 55 325 848 56 178
0.42500 511 35 31 445 11 21 848 54 319 843 56 177
0.45000 489 33 31 428 11 20 838 53 317 841 55 176
0.47500 472 29 29 406 10 18 829 52 311 836 54 175
0.50000 454 29 27 392 9 15 828 48 307 833 52 173
0.52500 437 29 26 378 8 13 827 48 301 831 51 170
0.55000 429 29 23 364 8 13 822 44 297 830 49 167
0.57500 405 26 21 338 6 12 818 42 291 824 49 163
0.60000 391 26 21 322 4 11 815 40 282 815 49 151
0.62500 371 25 19 308 2 10 812 39 275 809 49 137
0.65000 362 24 15 302 2 6 809 38 270 805 49 135
0.67500 341 20 10 280 2 4 804 36 256 800 49 135
0.70000 318 17 8 258 1 3 799 34 249 794 47 132
0.72500 299 16 7 241 1 3 794 30 241 789 46 131
0.75000 275 15 5 220 1 2 789 28 234 782 42 131
0.77500 244 15 5 195 0 2 782 23 227 776 38 129
0.80000 215 13 5 173 0 2 776 19 213 760 37 125
0.82500 184 11 4 148 0 2 768 15 204 750 36 123
0.90000 68 3 1 51 0 1 732 8 175 682 17 97
0.95000 9 0 0 6 0 0 672 6 147 616 3 57
0.99000 0 0 0 0 0 0 579 2 93 541 1 50
0.99900 0 0 0 0 0 0 468 1 58 454 1 22
0.99999 0 0 0 0 0 0 361 1 24 287 1 9
1.00000 0 0 0 0 0 0 0 0 0 0 0 0

Naïve Method Mixture Model45o Line Ratio
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Table 9.2 Results of the re‐identification methods when applied to the Link 234 WIM data 

 
 

Delta 0 1 -1 0 1 -1 0 1 -1 0 1 -1
0.00000 941 54 405 941 54 405 941 54 405 941 54 405
0.00001 925 49 137 925 49 130 941 54 405 938 53 254
0.00100 876 43 75 872 41 70 941 54 405 934 51 206
0.01000 800 34 45 793 30 43 941 53 403 926 49 131
0.05000 710 26 30 702 20 27 937 51 399 908 38 124
0.07500 679 24 27 674 16 23 935 47 392 903 36 124
0.10000 653 21 23 648 15 20 933 46 390 901 34 123
0.12500 629 20 23 624 13 20 931 46 387 899 31 122
0.15000 611 18 23 600 11 18 929 45 383 899 30 120
0.17500 594 18 22 580 11 18 925 45 375 895 29 120
0.20000 582 18 22 569 9 18 923 44 373 893 29 120
0.22500 569 18 21 555 7 17 923 44 368 891 29 120
0.25000 562 17 21 549 5 15 923 42 363 889 29 120
0.27500 550 16 19 537 4 13 922 41 359 888 29 120
0.30000 544 14 19 530 4 13 920 41 356 888 29 120
0.32500 537 13 17 521 4 12 917 40 355 885 29 120
0.35000 528 12 17 509 4 12 917 38 355 884 28 119
0.37500 516 10 16 493 4 12 915 36 351 883 28 119
0.40000 508 10 16 482 4 12 915 36 342 883 28 119
0.42500 498 10 16 469 4 11 914 35 338 881 28 119
0.45000 485 10 14 458 4 10 912 34 336 881 27 119
0.47500 478 10 13 450 4 9 910 34 332 877 27 119
0.50000 471 10 12 440 4 9 908 34 329 875 27 119
0.52500 458 10 12 425 4 9 906 33 326 872 27 119
0.55000 442 10 12 412 3 9 905 33 320 871 27 119
0.57500 430 9 12 403 3 9 903 32 312 871 27 119
0.60000 414 9 12 387 3 9 900 30 306 871 27 119
0.62500 396 9 11 369 2 8 899 29 299 871 27 119
0.65000 389 8 11 364 1 8 895 29 293 869 27 119
0.67500 381 8 10 352 1 7 891 29 284 866 25 119
0.70000 371 8 9 344 1 5 891 27 278 863 23 119
0.72500 359 8 9 332 1 4 889 26 271 863 23 118
0.75000 342 7 8 313 1 4 886 25 266 861 23 118
0.77500 325 7 8 297 1 4 878 24 260 860 23 118
0.80000 305 7 8 280 1 4 873 21 251 860 21 117
0.82500 288 7 6 263 0 3 868 18 243 857 21 117
0.90000 204 5 4 180 0 2 846 13 210 852 20 112
0.95000 114 1 2 94 0 1 818 9 183 799 14 73
0.99000 5 0 0 3 0 0 765 6 129 750 13 69
0.99900 0 0 0 0 0 0 655 4 78 691 12 64
0.99999 0 0 0 0 0 0 475 1 31 584 6 42
1.00000 0 0 0 0 0 0 0 0 0 0 0 0

Naïve Method 45o Line Ratio Mixture Model
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Table 9.3 Results of the re‐identification methods when applied to the Link 231 AVC data 

 
 

Delta 0 1 -1 0 1 -1 0 1 -1 0 1 -1
0.00000 898 119 983 898 119 983 898 119 983 898 119 983
0.00001 885 113 329 866 106 321 879 112 972 892 114 435
0.00100 870 108 226 848 88 221 879 111 972 892 112 384
0.01000 831 93 172 804 72 165 877 104 967 889 112 374
0.05000 767 87 130 736 57 120 870 97 949 885 110 358
0.07500 750 86 117 712 47 106 868 89 936 882 106 351
0.10000 725 85 109 679 41 96 865 85 920 878 105 347
0.12500 703 82 102 652 39 92 861 81 907 874 102 346
0.15000 683 80 95 627 33 82 858 79 888 872 101 342
0.17500 664 79 91 599 29 74 852 74 880 869 98 336
0.20000 638 77 87 568 21 67 848 69 869 869 95 330
0.22500 623 75 84 552 16 61 843 63 857 864 95 327
0.25000 611 72 78 532 14 56 834 58 846 862 91 320
0.27500 599 70 72 512 14 50 832 52 834 856 90 317
0.30000 584 69 69 488 12 47 830 50 822 853 90 314
0.32500 571 65 63 469 12 44 824 45 809 852 89 309
0.35000 556 64 60 449 9 40 818 44 794 845 87 307
0.37500 540 63 56 431 9 35 812 43 780 840 85 304
0.40000 521 60 55 415 9 35 804 41 769 838 85 300
0.42500 504 57 49 393 9 30 800 41 756 832 84 299
0.45000 485 54 41 378 8 25 791 38 747 830 81 297
0.47500 473 54 36 367 5 22 786 37 734 827 81 294
0.50000 449 53 35 338 5 21 784 35 726 823 80 291
0.52500 431 51 33 326 4 17 776 34 709 813 79 287
0.55000 405 45 29 309 3 15 775 30 697 805 78 282
0.57500 382 44 29 281 2 12 772 29 680 796 78 274
0.60000 350 41 26 255 2 10 761 29 664 778 77 242
0.62500 323 38 19 229 2 9 757 27 646 770 72 201
0.65000 299 36 15 208 2 7 752 25 628 763 70 199
0.67500 265 35 11 181 1 6 748 24 613 755 67 198
0.70000 233 31 6 154 1 5 743 23 600 747 66 196
0.72500 211 24 6 136 0 3 738 21 585 734 65 191
0.75000 186 22 5 113 0 3 727 21 565 730 61 188
0.77500 157 20 5 91 0 3 723 21 549 722 59 187
0.80000 117 14 4 70 0 3 718 20 525 704 55 183
0.82500 84 10 4 52 0 2 708 19 503 689 52 182
0.90000 16 3 1 9 0 0 666 11 439 631 30 148
0.95000 0 0 0 0 0 0 624 9 376 561 9 105
0.99000 0 0 0 0 0 0 543 6 281 495 2 87
0.99900 0 0 0 0 0 0 459 2 170 417 1 57
0.99999 0 0 0 0 0 0 349 0 58 288 0 27
1.00000 0 0 0 0 0 0 0 0 0 0 0 0

Naïve Method Mixture Model45o Line Ratio
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Table 9.4 Results of the re‐identification methods when applied to the Link 231 WIM data 

 
  

Delta 0 1 -1 0 1 -1 0 1 -1 0 1 -1
0.00000 951 66 983 951 66 983 951 66 983 951 66 983
0.00001 905 39 124 883 30 117 931 62 970 944 57 441
0.00100 867 24 59 848 20 58 931 62 970 933 45 251
0.01000 834 19 36 815 12 34 931 62 970 924 41 114
0.05000 765 14 26 747 9 24 930 60 965 914 35 108
0.07500 739 12 24 721 9 23 929 60 962 911 35 106
0.10000 726 12 23 708 9 22 929 60 960 909 33 106
0.12500 709 11 20 691 8 19 928 57 952 908 33 105
0.15000 689 11 20 670 8 19 927 57 945 908 33 105
0.17500 673 10 19 654 8 18 926 56 937 907 33 105
0.20000 656 10 18 635 8 17 926 56 937 906 32 105
0.22500 643 10 17 620 7 15 926 56 926 906 30 105
0.25000 625 10 15 602 6 13 926 55 921 902 30 105
0.27500 613 9 15 592 6 13 926 52 913 902 30 104
0.30000 601 9 14 579 6 12 923 51 910 900 30 104
0.32500 588 9 13 565 5 12 922 50 908 900 30 104
0.35000 576 9 13 552 5 12 922 49 899 900 30 104
0.37500 557 8 12 529 4 11 922 47 892 898 30 104
0.40000 543 8 10 516 4 9 920 46 888 897 30 104
0.42500 522 7 9 497 4 8 919 46 880 897 30 104
0.45000 510 7 9 485 4 8 918 45 872 897 30 104
0.47500 490 7 8 467 3 7 917 41 864 896 30 104
0.50000 476 7 7 453 3 6 915 40 860 894 29 104
0.52500 462 7 6 440 3 6 912 38 854 894 29 104
0.55000 441 7 5 422 3 5 911 35 848 894 29 104
0.57500 428 6 3 407 2 3 909 34 846 893 29 103
0.60000 415 6 2 395 2 2 907 33 838 892 29 103
0.62500 395 5 2 376 2 2 906 31 827 891 29 103
0.65000 375 3 2 356 2 2 906 31 821 891 29 103
0.67500 358 2 2 338 1 2 903 31 809 890 29 103
0.70000 334 2 2 316 1 2 903 28 798 889 29 103
0.72500 321 2 2 299 1 2 901 27 786 889 29 102
0.75000 298 2 2 280 1 2 901 27 777 888 29 101
0.77500 278 2 2 259 1 2 900 23 770 888 28 101
0.80000 252 2 1 236 1 1 899 22 750 886 28 101
0.82500 229 2 0 215 1 0 896 19 735 885 27 100
0.90000 137 1 0 130 0 0 889 17 673 881 26 100
0.95000 58 0 0 56 0 0 880 12 610 864 19 85
0.99000 0 0 0 0 0 0 843 7 495 836 18 81
0.99900 0 0 0 0 0 0 797 3 387 812 14 75
0.99999 0 0 0 0 0 0 595 0 254 656 2 34
1.00000 0 0 0 0 0 0 0 0 0 0 0 0

Naïve Method 45o Line Ratio Mixture Model
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APPENDIX B 
 

COMPARISON OF WIM MEASUREMENTS BETWEEN 
STATION PAIRS 
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APPENDIX C 
 

COMPARISON OF WIM MEASUREMENTS BY MONTH, LINK 
231 AND 234 
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